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Table 1l Comparison of results of numerical integration
of Eq. (6) with two-term approximation with internal
radiation absent

cosf 7, Ref. 4 T, Eq. (6)
1.000 1.335 1.352
0.875 1.281 1.293
0.750 1.226 1.223
0.500 1.108 1.002

by collecting the terms according to powers of «, one ob-
tains for 71

71 =~ + B8)*¢*[2 cos? + 3sin?(1l + B) et (7)

Solutions using Eq. (7) are plotted in Figs. 1 and 2. As may
be noted from the figures, temperature curves with « as a
parameter cross in the region 7/3 < § < w/2. The tempera-
ture, therefore, ceases to be an analytic function of « in that
region, which in effect restricts the range of validity of Eq. (6)
to about 0 < 0 < w/3.

It is interesting to note that all temperature lines seem to
cross in the point where 7 = 1, in the neighborhood of an in-
flection point. This fact can be used to get information about
the temperatures where Eq. (6) breaks down. From the
comparison with the data in the Figs. 1 and 2 and those by
Nichols,* it is seen that the value of the abscissa of the point
7 = 1is close to § = cos™! & for the range of & under con-
sideration. Then, using Eq. (6) for § < /3, together with
the information on the approximate location of the point
7 = 1, the temperatures over the rest of the shell can be
caleulated, using as a check the relation implied in Eq. (3).

It is also interesting to discuss the way in which Eq. (6)
works in the case of negligible internal radiation (8 = 0),
where the deviation of the shell temperature from the no-
conduction condition becomes relatively more significant.
In Table 1, the data from Ref. 4, p. 28, are shown for com-
parison with the figures based on @ = 0.25 and 8 = 0.

From Table 1 the conclusion can be drawn that, for 8 =
0, Eq. (6) still gives a reasonable approximation, showing
to what extent conduction effects alone will reduce the adia-
batic wall temperature on a thin spherical shell in space
(typical for 0 < o < 0.5).

Concluding Remarks

The temperatures obtained by the methods discussed in the
foregoing are useful in the calculations connected with the
output of the spacecraft solar cell powerplants.

However, one more interesting application seems to be
possible. As suggested by Reismann and Jurney? the
energy flux F for a sphere near the stagnation point may be
approximated for hypersonic-speed by the equation

F = a4 bcosd

o and b being functions of the freestream Mach number. '

They may be considered to be constants for conditions where
the effects of radiative cooling are of importance. From an
inspection of Eq. (1), it is obvious that it is also applicable
for this situation, with only minor modifications, if the free-
stream velocity remains parallel to the ray § = 0. ‘
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Satellite Dynamics for Small
Eccentricity Including Drag and Thrust

Kurr FORSTER*
University of California, Los Angeles, Calif.

Nomenclature
Ao = gatellite’s cross-sectional area
Cp = drag coefficient
F.F, = thrust component, radial and normal, respectively
m = mass of satellite
" = gravitational force on unit mass at unit distance
12 = velocity of satellite
p = density of atmosphere
5 =K+ -3

HE motion of a satellite in an orbit of small eccentricity
was variously considered in the literature, notably by
Perkins,! Lawden,? Newton,® Karrenberg et al.,* and Par-
sons.® The nonlinear problem with exponential atmosphere
has been the subject of outstanding papers by King-Hele,®
Sterne,” and others. In Ref. 1 the linearized problem is
treated for constant thrust without consideration of drag;
the results are used in Ref. 4 where the drag is treated as a
negative (constant) thrust assuming an atmosphere of con-
stant density and assuming that the initial orbit is exactly
circular. A complete linearized solution, that is, one valid
to the first order in (Ar/7), including arbitrary initial condi-
tions, vartable density and drag, and an arbitrary thrust pro-
gram is not known to this author. The availability of ex-
plicit expressions in closed form is quite useful in preliminary
orbit determination (for instance, for a two-point boundary
value problem), in rendezvous problems, and in low thrust
problems; hence, the necessary calculations were carried out,?
and the conclusions are presented in the following note.
For a spherical planet with stationary atmosphere, the
equations of motion in polar coordinates (r and v) are

m(i — ro* 4+ u/r?) = F.(t) — 3CpAeVo(r) 1
m[(rp) + 2] = F,() — 2CoAesVo(r) 2)

Let the satellite be observed, at time ¢ = 0, to have angular
velocity o (0) at distance ro; an angular velocity ng [ 9(0)]
is defined by the well-known relation

Tone? = u/re? 3)

and the unknown functions €(t) and ¢(t) are introduced
r(®) = nfl + ()] @
o) = m[l + ()] ®)

into the basic equations, which are then linearized by neglect-
ing higher powers of e and ¢. For instance, the velocity V =
(72 + r%2)12 becomes V = ryne(1 + e + ¢) to this approxi-
mation. Similarly, the linear approximation to the ex-
ponential atmosphere p = py exp{(ro — 7)/H] for scale height
H becomes

p(r) = po(1 — Ke) (6)
where K = r¢/H is introduced as a dimensionless quantity.
The initial conditions on e and ¢ at £ = 0 are

e() =0 E0) = Ang=7#0)/ry A 1 .(7)
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0(0) = B= (#(0)/n) — 1 Bl (8)

with 70,#(0), and #(0) assumed known from observation.
The factor ng is introduced next to A to render 4 dimension-
less. For the osculating ellipse in terms of the initial condi-
tions, one has®

a=r(l + BYe ¢ = A1+ B)?+ B¥2 + B)? (9)

The dimensionless quantity @ = 3Cprodope/m is introduced
which is the ratio of drag and gravitational force (at ¢ = 0)
divided by (1 + 2B), to obtain the following equations for
the dimensionless radial and angular accelerations:

€ + amge — n*(3e + 2¢) = Fi(f) (10
@ + 2¢ + ang[2¢p — (K — 2)] = Fy(t) — any  (11)

with F1(t) = F,/mro, and Fs (t) = F,/mrene.
This linear system is solved by a Laplace transformation
and leads to the characteristic equation

A(s) = s(s3+ Cis2+ Cos + C3) =0
C = 3ane Cy = ne?(1l + 2a?) Cy = —2ane® (K + 1)
(12)

with roots denoted by s, = 0, st = Ay, 52 = (A2 + Agj), and
s3 = (A2 — Ngj). By Cardan’s formula the roots are known
exactly; for small (aK), it is convenient to have their ap-
proximate values which are, to the second-order in «,

No = no{1 + 2a2[9(K + £)2 — 1]}
Mo=2am(K +1) A= —an(K + §)

In a numerical example for 300 km initial altitude, ballistic
parameter = 0.1 m?/kg, K = 107.71, and hence (aK) =~ 1.2
X 1073 Equations (13) were found to give the roots
correctly to five significant figures.

The solution to (10) and (11) for F; = F; = 0(the comple-
mentary function) is

e(t) = ao(eM — 1) + eM[ay sinhgt + as(coshet — 1)] (14)

() = B + Bo(eMt — 1) + eM(By sinhot + Bz coshl) — B2
‘ 15)

where the coefficients «, to B8: are determined from initial con-
ditions and characteristic roots.’t With Eq. (13), the ex-
* pression for e(f) becomes explicitly

t) = [2B — (K + 1)~ + 24a(K + 2)] X
(eZomolE+ 1)t _ 1) 4 g—amlK+(5/2)1 w
{[4 + 2a(1 — 2B) (K + 1)] sinno(l + sa2)t —
2[B + aA(K + 2)][cosne(l + sat)t — 1]} (16)

with a similar expression obtained for ¢(£) from Eq. (15).

It is apparent from Eq. (16) that the initial conditions enter
to the same order as the perturbing influence of drag: this
is seen by the simultaneous presence of the quantities 2B and
(K + 1)1 in the first bracket, and 4 and 2« in the second
bracket. Hence, an initial eccentricity even as small as a
few thousandths gives rise to terms as large or larger than the
drag perturbation, and this circumstance must be carefully
considered if the density of the atmosphere is to be estimated
by comparison of observed values with mathematical ex-
pressions? calculated for an initial eccentricity that vanishes
exactly, that is, for A = B = 0.

The initial orbital elements are given in Eq. (9) in terms
of A and B; the eccentricity is seen to be of the same order
of magnitude as 4 and B. If the linearized formulas are to
be used for an estimate of the influence of eccentricity on
some function of time (say, attitude) which is known for a
circular orbit, one may set B = 0 and A = ein Eqs. (14) and
(15) to obtain explicit expressions in terms of e.

(13)

T Mathematical details, being simple exercises, were deleted
at Editor’s request.
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Some improvements in the accuracy of the linearized solu-
tions can be achieved by the following considerations:

1) The motion in the initial osculating orbit is approxi-
mated in the linearized solutions by the terms [A sinngt —
2B(cosngt — 1)] and [—2A4 sinngt + 4B cosngt — 3B}, respec-
tively, obtained by setting & = 0 in (14) and (15). The
deviation from these terms constitutes the linearized perturba-
tion due to drag and/or thrust. Therefore, the following
expressions are formed:

E(t) = e(t) — A sinngt + 2B(cosngt — 1) 17)
D) = ¢(t) — 4B cosngt + 24 sinngt + 3B (18)

which represent the linearized perturbations of the initial
osculating orbit. By superimposing Eqs. (17) and (18) onto
the Kepler ellipse calculated for initial values 4 and B in the
standard way, the inaccuracies incurred by the process of
linearization are greatly reduced.

The error in r and v is of the order of the first neglected
terms, that is, of the order (r€)? and (nge)?, respectively; of
the two errors, the in-track error (in v) is the larger. As a
numerical example, the order of magnitude of ® was calcu-
lated for the example just cited (300-km alt). For a time
interval of 4 orbits (At =~ 8m) and eccentricity e = 0.01,
the resulting error is found to be about 60 m. Considering
the simplicity of formulas employed, this is a rather small
error.

2) Since the density varies strongly with position, the
validity of the formulas is essentially limited by the inaccuracy
inherent in the linearization of the exponential variation of
density, namely Eq. (6). If the initial excursions (ree) are
of the order of a scale height, it is advantageous to use a linear
formula for p(r) that is more accurate for larger values of the
density at perigee than for the small, and therefore less im-
portant values at apogee. Let ¢ and e be the initial maxi-
mum and minimum of ¢; then

e s = 2B{1 = [1 + (A2/4B?)]?} (19)
as follows from Eq. (9) with sufficient accuracy for the pres-
ent purposes. With p; and p,, the approximate densities

at apogee and perigee, respectively, po is replaced in Eq. (6)
by

P2

= 20
P 1+ (|€2!/€1) (20)

and Eq. (6) is replaced by the following expression:
p(r) = p,[1 — (¢/e)] (6"

Equation (20) yields a slightly different value for ¢, and, in
Eq. (6"), K is set equal to (1/€); this results in a linear inter-
polation for the density, which is quite accurate near peri-
gee but which neglects the density near apogee. Since the
drag decreases by an order of magnitude over the distance of
two scale heights, Eq. (6’) will yield better accuracy than Eq.
(6) if the initial values A and B are about as large as (1/K).
3) Inasmuch as terms of order €* and ¢? were neglected in
the linearized solution, the error, as mentioned before, is of
the order of these quantities. For small thrust and/or
density, € and ¢ are proportional to the time interval £, and,
hence, the error increases as 2. However, since the calcu-
lations using Eqs. (14, 15, or 16) are very simple, one can
subdivide the interval of interest, say T, into n subintervals
t, and repeat the calculation n times using the result obtained
for t; - ; as the initial condition for the subsequent calcula-
tion for the interval ¢;, By this procedure the magnitude of
the error is reduced by a factor n. For instance, in the fore-
mentioned numerical example, the error for 4 orbits was
found to be about 60 m; if, instead, the calculations were
performed consecutively 4 times, once for each orbit, the
cumulative error would be only one-fourth or about 15 m.
By the form of Egs. (14) and (15), a particularly easy way
can be chosen for such calculations: if consecutive intervals
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t, are chosen so that ¢, = 2nw/N\; (n = any integer), the sine-
cosine terms are seen to vanish, and only the first exponential
term and constants remain; the radial displacements e, at
time ¢, are then given by the particularly simple relation

en = (g™ ™/ — 1) @1

and a similar expression results for ¢.. For any conveniently
chosen integer 7, e, and ¢, constitute new initial conditions
for the next time interval. The accuracy of the final results
obtained in this manner is beiter than first order in e and ¢;
though convergence has not been proved, the assumption
seems reasonable that by further subdivision of time intervals
Egs. (14) and (15) yield a sequence of solutions which tends
to the exact solution of the problem. ¥or low thrust devices
that often necessitate integrations over hundreds of orbits,
the method just outlined will have computational advant-
ages.

The inclusion of thrust in the forementioned formulism
involves merely the addition of terms, since the basic equa-
tions are linear (cf., the previous footnote). If the Laplace
transforms of ¢(f) and ¢(f) are known and if Fy(s) and Fy(s)
are the transforms of thrust-functions Fi(f) and F.(t), then,
to include the thrust, [4 + F.(s)] must be inserted in place
of A and [B + Fu(s)] in place of B, and the inverse trans-
forms then yield the complete response that is the comple-
mentary function and a particular integral.
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Comparison of Error Transfer Matrices
for Circular Orbits
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N problems dealing with the motion of orbiting bodies, it

is often necessary to investigate the propagation of errors

in position and velocity as the body progresses in its orbit. A

convenient tool for such studies is the error matrix, which re-

lates position and velocity errors at two arbitrary points of an
orbit,
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For circular orbits, there are two matrices in common use.
The first, which may be referred to as the Clohessy-Wiltshire!
maftrix, refers to the relative motion between an orbiting body
and a reference satellite in circular orbit. The relative vector
is expressed in terms of a Cartesian coordinate system
centered on the reference satellite and rotating at a constant
angular rate in the reference orbital plane to keep one axis
always horizontal. The second formulation may be called the
Duke? matrix because of its use in referenced reports. This
also describes the relative motion between an orbiting body
and a reference satellite in circular orbit, but a different coor-
dinate system is employed. In this case the quantities em-
ployed are the relative differences in distance to the center
of the force field, central angle subtended, velocity vector
magnitude, and velocity vector angle with respect to the
vertical. A recent paper by Wisneski® presents a detailed
approach to the derivation of the Duke matrix.

Because of the difference in coordinate systems employed,
the two formulations appear to be different. Nevertheless,
they are in fact exactly equivalent, and each is based upon the
same linearizing assumptions and approximations. It is the
purpose of this note to show the equivalence of the two formu-
lations. To avoid confusion, the first formulation will be
henceforth referred to as Clohessy-Wiltshire, and the second
will be called Duke.

Derivation of Transformation Equations

The pertinent geometry is given in Fig. 1. The reference
satellite in circular orbit is labeled S; the orbiting body of
interest is located at P. A planar situation only is deseribed.
Although a third dimension (perpendicular to the orbital
plane) and a time perturbation may be added, these have
been omitted since the matrix description of each formulation
gives identical terms for each quantity.

The satellite is moving counterclockwise at constant trans-
lational velocity V, angular velocity w, and distance R from
the center of the force field O. In the Clohessy-Wiltshire
system the relative position of the orbiting body is measured
with respect to the rotating Cartesian axes labeled z-y. The
coordinates are designated Az, Ay for position, and Az, Ay
for velocity.

For the Duke system, the reference satellite is described by
the parameters R, 8, V,and 8. The orbiting body is described
by R,, 0,, Vp, and B,. The relative parameters are then

AR =R, — R A§ = 0, —
AV =V, =V AB =B, — B

Note that B is actually constant at 90° because of the
circularity of the reference satellite’s orbit.

The relations between the Clohessy-Wiltshire and Duke
systems are derived as follows, noting that

ARK R A0 = very small angle
AV KLV AB = very small angle
For horizontal position,
Ar = —(R 4+ AR) sinAé
=~ —RA§ )]
For vertical position, |

= (R 4+ AR) cosAf — R

©)
= AR

For horizontal velocity,
At = —V,sin(B, + A8) + wAy + V

Here the wAy term arises because of the rotation of the coor-
dinate system.



